小學數學《一個數除以小數》教學反思
小學數學《一個數除以小數》教學反思
一個數除以小數是在學生學習過除數是整數的除法后進行的。除數是整數的小數除法學生較容易掌握。但除數是小數的除法卻是個難點。而商不變性質正是聯系舊知與新知的橋梁,也是新知的最佳生長點。在教學中,復習舊知后,我要求學生根據214.5÷15=14.3利用商不變的規律直接寫出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商。這是學習層面的一個飛躍,但卻是有根據、有基礎的飛躍。學生能根據商不變性質來說理,就證明了這個飛躍是學生能夠接受的。只要緊緊抓住商不變性質這根線索,這部分內容就能輕松獲得突破。
在教學除法豎式時,必須規范。在明確算理的基礎上,即運用商不變的方法把小數除法轉化成整數除法后,怎么書寫才能使計算準確率更高一點?事先我也進行了考慮。讓學生明白,小數除以小數的關鍵在于轉化,即把除數轉化為整數。如何轉化,要利用商不變的性質。先把除數的小數點畫去,為使學生看得更清楚,我要求學生在原有的小數點上打上小叉,再把被除數的原有的小數點打上小叉,向右移動,移動的位數取決于除數的小數位數。除數有幾位小數,被除數的小數點就向右移動幾位。然后按照整數除法的方法進行計算。最后通過一些課后練習及生活中的數學,讓學生鞏固方法。
在計算的過程中,除數和被除數小數點位置的確定是一個難點,部分學生容易出現錯誤,適時引用兒歌可以幫助學生較好的突破這個難點。“外移幾,里移幾;方向一致要注意;里缺補零要牢記;上下點點要對齊。”
在作業反饋中,我發現學生計算錯誤較多。主要表現在以下幾個方面:
一、不能順利的移動小數點。通過移動小數點把除數變成整數,所有的學生都知道,也都能順利完成,關鍵是后進生總是忘了同樣移動被除數的小數點。或者移動得次數與除數不一致。雖然他們知道除數與被除數的小數點移動是根據商不變的性質來的,但是他們在做作業的時候,就忘記了。
二、在完成豎式的過程中,個別同學書寫不認真,數位對不齊。這也是部分學生錯誤的原因之一。
三、商的小數點與被除數原來的小數點對齊。
四、除到哪位商那位,不夠時忘記在商的位置上寫0,再拉下一個數。還有部分學生用余數再除一次。
現在反思其中的問題,覺得教學中在商的小數點的處理上沒有具體的細化分析和引導,學生的理解也沒有真正到位。這樣,看似“簡單”的問題卻出現了紛繁的錯誤也就再所難免了。因此,只有站在學生學習的角度去思考設計教學,不能以為一些問題能很簡單的生成。教學從學生的新知生長點上去展開重點引導,在學生的迷茫處給與及時地指點,這樣或許效果會好許多。
篇2:小學教師數學教學隨筆:生活中小數教學反思
小數和單復名數的互化既是本節課的重點,又是難點,因此學生掌握并熟練應用有一定的困難。概念主要是名數、單名數、復名數三個,包括單名數改單名數、單名數改復名數、復名數改單名數這些共3類。
學習這個知識點之前,要對于小數點位置移動的方法、常用的計量單位的名稱、相鄰單位之間的進率一定要熟練掌握,不相鄰的單位之間的進率也要會推導,學生明確了這些,知識點迎刃而解,解決問題的能力得到提高,強化了知識掌握的靈活性。本節課是關于學生的生活上的小數,教學的內容是兩部分,低級單位轉化為高級,高級單位轉化為低級單位。但是兩部分總的就是來教學單位之間的轉化,及單復名數之間的轉化,本節課內容不是很難,但是學生轉化起來很困難,錯誤率很高。其實有兩種改寫方法:一種是根據小數的實際意義改寫;一種直接利用計量單位間的關系,用乘或除以進率的方法。其實這兩種方法都是可取的,只要方法正確,都是可以的。針對以上預期的難點,我和學生一起總結了如下改寫的三部曲:1、判斷。先判斷是低級單位的數改寫成高級單位的數還是高級單位的數改寫成低級單位的數,從而決定是乘進率還是除以進率。2、想。要想清楚兩個單位間的進率,是10,100,還是1000。3、移。根據上述兩個方面判斷確定小數點應該向左還是向右移,移動幾位。
教完這一課,通過課堂作業和抽測反饋,發現部分學生把單位改寫的結果搞錯了。我利用了近兩節課的時間進行了一對一的專項輔導:了解他們的錯因,幫助他們掌握正確的方法。經過輔導發現他們的問題主要集中在三個方面:一、單位間的進率模糊不清;二、分不清到底屬于哪種轉化:是高級單位轉化成低級單位,還是低級單位轉化成高級單位;三、不能正確的移動小數點。其中第一類錯誤居多,后兩類錯誤經過單獨輔導大部分學生已經沒有困難。與以往的錯誤相比,這次的錯因并不是學生沒有掌握方法,而是他們不會用方法,比如:分不清是乘進率還是除以進率,針對這一情況,每出現一次錯誤我都要反復地問著同樣的問題:哪個是高級單位的名數,哪個是低級單位的名數?大部分學生經過不斷的提醒,都能順利的找到方法,可問題還是不能解決,單位間的進率又會出錯,致使錯誤不斷。應該怎么教?
篇3:《小數的產生和意義》數學教學反思
《小數的產生和意義》數學教學反思
《小數的產生和意義》是在三年級《分數的初步認識》和《小數的初步認識》的基礎上教學的。這一內容,既是前面知識的延伸,也是系統學習小數的開始。要求學生明確小數的產生和意義,小數與分數的聯系,掌握小數的計數單位及相鄰兩個計數單位之間的進率,從而對小數的概念有更清楚的認識是本節課應達到的知識教學目標。對比教學設計和上課的實際效果我有如下想法。
1、猜數導入,將學生注意力引向課堂。
課始當我打開課件,呈現的是一個由多個長方形組成的一個大長方形,學生們馬上就興奮了。“老師,這是什么啊。”“老師,這下面有什么啊。”我說:這個長方形下面有一個很特別的數看看誰能猜出來。當一個個小長方形不斷飛走數字一步步凸顯一直到8.9這個數出現學生都處于興奮狀態。就此很順利的引入了小數課題。這個環節也表明:興趣是最活躍的心理成分。當學生對某種事物發生興趣時,他們就會主動地、積極地、執著地探索。
2、注重方法滲透,引導學生探究
本節課中,在教學1分米=1/10米=0.1米時前我增加了讓學生在熟悉的人民幣單位背景中探究分數與小數的聯系這個環節。具體的作法是:(1)出示一張一元的人民幣問:誰能從中拿出一角錢。有學生說去買九角錢東西就還剩下一角錢;有學生說把這一元錢換成10角錢再拿一角就行,我請這個學生上臺示范給大家看。然后再問:一角錢用元作單位用分數怎么表示,用小數怎么表示。學生很快寫出了1元=1/10元=0.1元。。(2)我又拿起一張一角的人民幣問:誰能從中拿出一分錢。將上一個環節重復。學生又寫出了1分=1/100元=0.01元。滲透了這種等量替換思想后讓學生自學書上關于1分米=1/10米=0.1米......內容。讓學生感悟十進制分數與小數之間的聯系,進而鼓勵學生在學習過一位小數的基礎上,讓學生遷移、類比認識二、三、四位小數。最后讓學生自己歸納抽象出十分之幾、百分之幾、......可以寫成一位小數、二位小數......,使學生順利地從直觀思維過渡到抽象思維。
3、不足或困惑
小數意義這一課屬于概念教學,如何讓學生建立準確的概念,尤其是在探索小數的意義這一環,本來用熟悉的米尺讓孩子去直觀認識,應該為學生實實在在的創設一片自主探究的天地,而我是一路“扶”著孩子走過來的,沒有把學習主動權真正交給學生,因為自己最怕上的就是要帶著學具,希望學生能夠小組合作進行操作探究的課,學生一操作,就要花費很多時間,這樣練習時間往往不夠。如何引導全體學生自主探究,并且能夠在操作中領悟到一些什么,而且還有一些練習的時間,那該多好!